This volume brings together contributions from leading researchers in the field of agent-based modelling and simulation. This approach has grown out of some recent and innovative ideas in the social sciences, computer sciences, life sciences, physics and game theory. It is proving helpful in understanding complexity in many domains. The opportunities it offers to explore the experimental approach to social and human behaviour is proving of theoretical and empirical value across a wide range of fields.

With contributions from researchers whose work has served to define this new field such as Nigel Gilbert, Robert Axtell (in economics and social science) and Jacques Ferber (in multi-agent systems), as well as practitioners who are working at the cutting edge of the new domain, this collection of essays has been assembled by two of its leading exponents: Frédéric Amblard and Denis Phan.

The research, case studies and theoretical approaches discussed in this book are designed to introduce beginners and experts alike to the current state of play in this new and exciting field of social science.

Frédéric Amblard is a Lecturer in Computer Sciences at the University of Toulouse and researcher at the Institut de Recherche en Informatique de Toulouse (CNRS). He is currently Secretary of the European Social Simulation Association, and author of many articles in the field of social simulation.

Denis Phan is Post & Telecommunications Administrator, Research Engineer in Computational Economics and Social Sciences at GEMAS (CNRS and University of Paris IV Sorbonne), and Associate Researcher at the Centre de Recherche en Économie et Management (CNRS and University of Rennes I). He is the co-author of the Moduleco Simulation Framework, now integrated into the Madkit Platform and has published widely in the field of design of agent-based complex social systems.
Contents

LIST OF CONTRIBUTORS vii
ACKNOWLEDGEMENTS ix

INTRODUCTION
Frédéric Amblard and Denis Phan 1

1. Multi-agent Concepts and Methodologies
Jacques Ferber 7

2. Introduction to Discrete Event Modelling and Simulation
Eric Ramat 35

3. Exploring Models by Simulation: Application to Sensitivity Analysis
Vincent Ginot and Hervé Monod 63

4. Assessment and Validation of Multi-agent Models
Frédéric Amblard, Pierre Bommel and Juliette Rouchier 93

5. Computational Social Science: Agent-based Social Simulation
Nigel Gilbert 115

6. The End of the Beginning for Multi-agent Systems Social Science
Robert Axtell 135

7. Agent Models in Urban Geography
Lena Sanders 147
8. Towards an Epistemology of Multi-agent Simulation in Social Sciences
 Pierre Livet 169

9. Modelling With and For Stakeholders
 Nils Ferrand 195

10. From Networks of Automata to Agent-based Models: Discrete Choices with Social Influence
 Denis Phan 219

11. Modelling, Implementing and Exploring Agent-based Models: An Example
 Gilles Daniel 257

12. An Introduction to UML for Modelling in the Human and Social Sciences
 Pierre Bommel and Jean-Pierre Müller 273

13. Comparison of Three Implementations of Schelling’s Spatial Segregation Model
 Eric Daude and Patrice Langlois 295

 Jean Louis Dessalles, Jean Pierre Müller and Denis Phan 327

APPENDIX 1
 Epistemology in a Nutshell: Theory, Model, Simulation and Experiment
 Denis Phan, Anne-Françoise Schmid and Franck Varenne 357

APPENDIX 2
 Philosophy of Social Science in a Nutshell: From Discourse to Model and Experiment
 Michel Dubois and Denis Phan 393
List of Contributors

Frédéric Amblard is Associate Professor in Computer Sciences at the University of Toulouse I and researcher at the Institut de Recherche Informatique de Toulouse (IRIT).

Robert Axtell, former Senior Fellow in Computational Social Sciences, in GSES at the Brookings Institution, Washington DC, is now Associate Professor of Computational and Data Sciences, researcher at the Center for Social Complexity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia.

Pierre Bommel is Researcher in Computer Sciences and Computational Social Sciences at the Agricultural Research Center for International Development (CIRAD), Montpellier, and a member of the UPR GREEN.

Gilles Daniel Associate Researcher at the Department of Entrepreneurial Risks, Swiss Federal Institute of Technology (ETH) Zurich.

Jean-Louis Dessalles is Associate Professor in Computer and Cognitive Sciences at ParisTech, École Nationale Supérieure des Télécommunications.

Michel Dubois is Senior Researcher in Sociology at GEMAS, CNRS and University of Paris IV Sorbonne.

Eric Daudé is Associate Professor in Geography at the University of Rouen and researcher at IDEES, CNRS, MTG Laboratory (Modelling and Graphic Treatments in Geography).

Jacques Ferber is Professor of Computer Sciences at University of Montpellier and a researcher at the Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), CNRS & University of Montpellier II.
Nils Ferrand is Senior Researcher in integrated modelling and decision support at the Joint Research Unit Gestion de l’Eau, Acteurs et Usages (G-EAU) of Cemagref, Montpellier.

Nigel Gilbert is Professor of Sociology and Director of the Centre for Research in Social Simulation (CRESS) in the Faculty of Arts and Human Sciences at the University of Surrey, Guildford, UK.

Vincent Ginot (d. 2007) was an engineer at the Génie Rural des Eaux et Forêts, and Research Engineer in the Spatial Statistics Unit at the Institut Nationale de Recherche Agronomique (INRA), Avignon.

Patrice Langlois is Associate Professor in Geography at the university of Rouen and Deputy Manager of IDEES CNRS, and a member of the MTG Laboratory.

Pierre Livet is Professor of Philosophy and Epistemology at the University of Aix-Marseille I and Director of the Centre of Comparative Epistemology and Ergology-CNRS & University of Aix-Marseille I.

Hervé Monod is an agronomist statistician and is Senior Researcher at the Applied Mathematics and Computer Science Unit at INRA, Jouy-en-Josas.

Jean Pierre Müller is Senior Researcher in Computer Sciences at the Agricultural Research Center for International Development (CIRAD), Montpellier, Head of the UPR GREEN and Associate researcher at LIRM, CNRS & University of Montpellier II.

Denis Phan is Post & Telecommunications Administrator, Research Engineer in Computational Economics and Social Sciences at GEMAS, CNRS & University of Paris IV-Sorbonne, and Associate Senior Researcher at CREM, CNRS & University of Rennes I.

Eric Ramat is Professor of Computer Sciences at the University of the Littoral in Calais and Researcher at the Laboratory of Computer Sciences (MESC).

Juliette Rouchier is Senior Researcher in Cognitive Economics at Groupement de Recherche en Economie Quantitative d’Aix Marseille (GREQAM), CNRS & University of Aix-Marseille I.

Lena Sanders is Research Director in geography at CNRS and Director of the Geography-Cities Laboratory, CNRS, University of Paris I and University of Paris VII.

Anne Françoise Schmid is Associate Professor in Philosophy and Epistemology at the INSA of Lyon and researcher at Laboratoire de Philosophie et d’Histoire des Sciences (LPHS) Archives Henri Poincaré, CNRS and University of Nancy II.

Franck Varenne is Associate Professor in Philosophy and Epistemology at the University of Rouen and Researcher at GEMAS, CNRS & University of Paris IV-Sorbonne.
This book is dedicated to the memory of our dear colleague, Vincent Ginot, who died in an accident in January 2007.

It has been prepared for the ABM–S4–ESHIA Research School: Agent Based Models for Spatial Systems in Social Sciences and Economic Science with Heterogeneous Interacting Agents organized by the European Research Group (ERG-S4) Spatial Simulation for Social Sciences (http://s4.parisgeo.cnrs.fr) and by the Society for Economic Science with Heterogeneous Interacting Agents (ESHIA—http://www.es-hia.org/) and supported financially by the CNRS and the European GIACS Network (http://www.giacs.org/).

We gratefully acknowledge these institutions as well as the joint ANR CORPUS programme of the French National Research Agency for further financial support through the Corpus of Ontologies for Multi-Agent Systems in Geography, Economics, Marketing and Sociology (COSMAGEMS) project.

We would also like to thank Alexandra Frénod-Dunand for her help with the preliminary work on this book.
For almost the last ten years, the agent-based modelling approach has allowed us to conceptualize and simulate an organized population of agents that have interactions among themselves and with their environment. In the social sciences, such an approach allows us to formalize complex situations with multiple scales (either spatial, temporal or organizational) and heterogeneous agents engaged in social activities as well. These agents can have more or less developed capabilities, from reactive agents constitutive of the collective intelligence [BON 94] to cognitive agents having more sophisticated patterns of rationality, as anticipated by Simon [SIM 69], those patterns being formalized for instance by using appropriate logics [WOO 00, SUN 05]. This book is a translation of the volume previously published in French and made up of the conferences given during the summer research school, Agent-based Modelling and Simulation of Complex Systems for the Social Sciences: Principles and Methods of Design and Use, organized by Frédéric Amblard, Nils Ferrand and Denis Phan in Porquerolles, France, in September 2005. In this new edition, the book displays some differences compared to the first edition in French. A chapter written by the Commod (Companion Modelling) group has not been incorporated into this edition but it will appear in English in the Ecological Modelling journal. Some of the second and third parts of the book that were dedicated to economics and spatial modelling will be published in
As a whole, the book addresses the specialist, with a description of the domain and the current challenges, and beginners as well, with some examples in the social sciences and some hints on how best to use this approach. It also proposes some insights into recent developments and new questions posed to agent-based modelling, at a moment when the field approaches a decisive turn, beyond its emergence phase (see Chapter 6 and [TES 06]).

Chapters 1 and 2, written by Jacques Ferber and Eric Ramat, present the computer sciences foundation of this approach, without neglecting its impact on modelling and simulation practices. Chapter 3, written by Vincent Ginot and Hervé Monod, discussed the statistical methods used to analyse data generated by these in silico experiments that are agent-based simulations. Chapter 4, co-authored by Frédéric Amblard, Pierre Bommel and Juliette Rouchier, deals with the assessment and the so-called “validation” of agent-based models and simulations. Following the discussions we had in Porquerolles about the methodological and epistemological questions associated with our domain, and as this chapter raises some of these questions, it was important for us to extend it with two additional contributions: Appendix 1: Epistemology in a Nutshell—Theory, Models, Simulations and Experiment by Denis Phan, Anne-Françoise Schmid and Franck Varenne and Appendix 2: Philosophy of Social Science in a Nutshell—From Discourse to Model and Experiment by Michel Dubois and Denis Phan.

In Chapter 5, Nigel Gilbert, sociologist and pioneer of simulation in the social sciences [GIL 95], draws up a panorama of the methods, problems and results in this domain, followed, in chapter 6, by another pioneer, Robert Axtell, economist and computer scientist [EPS 96]. For the latter, agent-based modelling and simulation are “at the end of the beginning” and therefore are entering a new phase, characterized by the conjunction of accumulated knowledge and the increase of the computer power and programming languages. Chapter 7, written by Lena Sanders, is concerned with the history of modelling and simulation in urban geography, but it also raises some questions that concern all the social sciences as well as geography. Chapter 8, by Pierre
Livet, extends epistemological thought in social science, by questioning the cognitive and epistemic status of simulation. Chapter 9 written by Nils Ferrand, presents the framework of a participative approach, using agent-based modelling with the actors but using also the artefact produced by this modelling process in order to discuss concrete problems of collective decision-making, for instance dealing with resources management.

The second part of this book is dedicated to case-based studies and exercises in agent-based modelling and simulation in economics and geography. Thus, Chapter 10, written by Denis Phan, introduces and exemplifies the articulation between automata networks and multi-agent systems. Chapter 11, authored by Gilles Daniel, exemplifies the modelling, implementation and exploration of a multi-agent model. Chapter 12, co-authored by Pierre Bommel and Jean-Pierre Müller introduces UML, a graphical modelling language that is frequently used to make conceptual models. Chapter 13, written by Eric Daudé and Patrice Langlois compares three different implementations of Schelling’s model; it illustrates some of the difficulties involved in moving from a partially described conceptual model and an implemented model. The last Chapter by Jean-Louis Dessalles, Jean-Pierre Müller and Denis Phan is concerned with the emergence issue in multi-agent systems, it is written . The book ends with two appendices written respectively by Denis Phan, Anne-Françoise Schmid and Franck Varenne, and by Michel Dubois and Denis Phan, dealing with epistemological issues linked on the one hand to simulation and on the other hand to social science and economics.

Agent-based modelling has many sources: computer sciences [FER 99, WOO 02], the stream of adaptive complex systems in physics or in biology [HOL 75, WEI 91, NAM 06] or the domain of artificial life [LAN 89]. It has also been used in ecology with the individual-based modelling (IBM) approach. This approach is based on a particular property of multi-agent architectures that allows us to formalize and activate individual properties that are specific to the agents, as interaction and communication modalities between the system’s constitutive entities (the agents, but also more complex entities like groups of agents for instance - see Chapter 1). The agent-based approach can be linked in some disciplines to well-known conceptual frameworks (such as methodological individualism in sociology or in economics). And in some cases it permits completion of those conceptual frameworks, thanks to the integration of relational or organizational elements that
can be formalized as graphs on which agents are interacting, giving to the resulting system the dynamical properties of a complex adaptive system. The multi-agent architectures help in explanation of, on the one hand the nature of the relations between the social environment of the agents (organizational or institutional elements, relational structures, etc.), and on the other hand the individual determinants of the action of the agents (the cognitive dimension, see for instance Chapters 1 and 14). They offer also an adequate framework to investigate the question of the ontology of “social objects” [LIV 00] and of “social causalities”, for instance through emergent phenomena (see Chapters 5 and 14).

Geography, whose subject of study is inscribed in both space and time, raises the question of the constitution of entities by composition in architectures that are both multi-level and multi-perspectival. Multi-scale representation in space also poses questions about temporal patterns of the processes under consideration (see Chapter 7). Finally, the notions of model and modelling are central to this book although not presented in a systematic way (see Appendix 1, Section 3; Appendix 2, Section 4 and [MOR 99]). Obviously, between the potencies proposed in Chapters 1 and 2 by computer scientists and effective realization in the social sciences, a gap has to be filled. Multi-agent models, that can be seen as “complements” or “substitutes” to classical formalisms (see Chapter 6), may have the objective of reproducing stylized facts or observed phenomena (see Chapter 7), or can be based on the coupling of models of different nature (see Chapter 2). In all cases they bring new methodological thought to the application domain. Is it a new epistemological “computationalist” point of view, as Varenne would see it? (See Appendix 1, Section 3 and [VAR 06]). Although we cannot answer all of these questions, they are addressed in this book.

REFERENCES

