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Summary. In this paper we explore the impact of local social influence on the 
equilibria in a model of noiseless binary choices. We investigate the interplay be-
tween social influence and individual decision to adopt. We compare probabilistic 
analytic calculi based upon an infinite size population and ACE based simulations 
for finite size populations in the case of regular local influence network. For a 
given exogenous value, there is a multiplicity of equilibria, depending on the pre-
vious state of the system (path-dependence). Moreover, the inner loop illustrates 
the return point memory effect, in which the system remembers its former state. 
Keywords. Binary Choice, Complex Systems, Heterogeneous Interacting Agents, 
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1 Introduction 

In this paper we explore numerically by means of ACE the impact of local social 
influence on binary choices. The basic model of binary choices with externality 
presented here (the “GNP model”) is based on (Nadal et al., 2005; Gordon et al., 
2005; Semeshenko et al., 2006, Phan and Pajot 2006; see Phan and Semeshenko 
2007 for an introduction and a review of literature). GNP model has been general-
ized to a large class of distributions in (Gordon et al., 2006). It allows to study the 
collective behaviour of a population of interrelated heterogeneous agents. Numer-
ous papers in this field concern homogeneous agents with stochastic choices, in 
particular, among others: (Brock and Durlauf, 2001) – hereafter BD model. Our 
GNP class of models differs by the nature of the disorder. The former belongs to 
the classes of Random Utility Models (RUM): the utility is stochastic. The indi-
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vidual preferences have an identical deterministic part and the heterogeneity 
across agents comes from the random term of the RUM. In our noiseless GNP 
model, agents are heterogeneous with respect to their idiosyncratic preferences 
(IWA) which remain fixed and do not contain stochastic term. This model belongs 
to the class of the Quenched Random Field Ising Model, well know in statistical 
physics. 

The question of the local topologies of interactions has been recently examined 
by (Ioannides 2006). In the following, we present equilibria results for models 
with a local regular network (cyclical, one and two dimensional with nearest 
neighbourhood). This work is an extension to the case of local interactions of the 
GNP model presented previously. Therefore, the reader is assumed to be familiar 
with these references. Several important aspects of the analysis and simulation of 
the model which are discussed in this paper are not repeated here in order to save 
space, or mentioned only very briefly for the sake of completeness. Section 2 in-
troduces the GNP model and shows how this framework is related to population 
games by summarizing previous contributions (Phan and Semeshenko 2007). Sec-
tion 3 and 4 present and compare both probabilistic calculi for infinite size popula-
tion and ACE based simulations for finite size populations in the case of simple 
regular local influence network (lattice). Calculus in section 3 are based upon a 
probabilistic method recently introduced by (Shukla, 2000) to calculate exactly the 
hysteresis path both starting from an homogeneous state (nobody adopt) or from 
an arbitrary initial state The simulations were conducted using the multi-agent 
platform “Moduleco-Madkit” (Gutknecht and Ferber, 2000; Phan, 2004). A spe-
cial attention is devoted to the Sethna's inner hysteresis (Sethna et al., 1993). For a 
given value of the external parameter (i.e. price), there is a multiplicity of equilib-
ria, depending on the previous state of the system (path-dependence). Moreover, if 
this parameter returns back to some initial value, the system returns precisely to the 
same state from which it left. The inner loop illustrates the return point memory effect, 
in which the system remembers its former state. 

2. GNP framework with local setting 

2.1. Modelling the individual choice in a social context 

We consider a set of N agents { }∈ ≡Ni 1,2,...NΛ with a classical linear willing-
ness-to-adopt function. Each agent makes a simple binary choice, either to adopt 
(ωi =1) or not (ωi = 0) (e.g., to buy or not one unit of a single good on a market, to 
adopt or not the social behaviour, etc.). A rational agent chooses ωi in order to 
maximize its surplus: 
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where C is the cost of adoption, assumed to be the same for all agents, and where 
Hi represents the idiosyncratic preference component. The cost of adoption can be 
subjective or objective - it may e.g. represent the price of one unit of a good. Each 
agent i is influenced by the (expected) choices kω  of its neighbours k∈ϑi, within 
a neighbourhood i Nϑ Λ∈  of size Nϑi. Denoting with Jik / Nϑi, the corresponding 
weight, i.e. the marginal social influence on agent i from the decision of agent 
k∈ϑi, the social influence is a weighted sum of kω  choices.  When the weights 
are assumed to be positive, Jik > 0, it is possible, according to (Brock and Durlauf, 
2001), to identify this external effect as strategic complementarities in the agents' 
choices. 

In the GNP model agents are heterogeneous with respect to their idiosyncratic 
preferences, which remain fixed and do not contain additively stochastic term. The 
Idiosyncratic Willingness to Adopt (IWA) of each agent is distributed according to 
fy(y) the Probability Density Function (pdf) of the auxiliary centred random vari-
able Y, such as H is the average IWA of the population: 

i i i i
N NN N

1 1H H Y  with :   lim Y 0      lim H H
N N→∞ →∞

= + = ⇒ =∑ ∑  (2) 

As Yi remains fixed, the resulting distribution of agents over the network of re-
lations is a quenched random field: the agents' choices are purely deterministic.  
As mentioned before, this contrasts with the random utility approach in the BD 
model. These two approaches may lead to different behaviours (Galam, 1997; 
Sethna et al., 1993, 2005). One advantage of the GNP model is that it does not 
constrain the distribution of the idiosyncratic willingness to adopt to be a priori 
logistic. Moreover, the qualitative feature of the results may be generalized to a 
large class of distributions (Gordon et al., 2006). We can assume hereafter without 
loss of generality that the idiosyncratic preferences are distributed according to a 
bounded, triangular pdf. This allows the analytical exact determination of the 
equilibrium properties in the case of complete connectivity (Phan and 
Shemeshenko, 2007). In the following, we restrict to the case of regular nearest 
neighbourhood, cyclical network of dimension one (circle, with Nϑi = 2) and two 
(torus, with Nϑi = 4, von Neuman’s neighbourhood). Moreover, for the sake of 
simplicity, we restrict to the case of positive homogeneous influences: 

N i iki , k : J J 0Λ ϑ∀ ∈ ∀ ∈ = > . For a given neighbour k the social influence is J / 
Nϑi, if the neighbour is an adopter (ωk= 1), and zero otherwise. Let e

iη  be i’s ex-
pected adoption rate within the neighbourhood 
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With these assumptions the surplus of agent i if he adopted is: e
i iH C Jη− + . 

The conditional probability of adoption, for a given e
iη is: 

( ) ( )e e
i i i iP 1 P H C Jω η η= = > −  (4)

2.2. Individual interactions in the neighbourhood as a population game 

The interest of studying such idiosyncratic (exogenous) heterogeneity becomes 
clearer if one reinterprets the GNP model within a game theoretic framework. 
Each agent i has only two possible strategies: to adopt ω =i 1  or not i 0ω = . In 
the following, we assume agents have myopic expectations about the behaviour of 
their neighbours: ( ) ( )i i i1t tω ω ω− − −= − ≡ , then ( ) ( )e

i it tη η= . The best response 
of an agent playing against its neighbours is formally equivalent to that of an agent 
playing against a Neighbourhood Representative Player (NR) (Phan and Pajot 
2006, Phan and Shemeshenko, 2007). NR player in turn plays a mixed strat-
egy [ ]nr i 0,1ω η= ∈  In the present case of finite neighbourhood local interaction, ωnr takes 

its value in a discrete subset of [0, 1]. For example for Nϑi = 2, we have ωnr = ηi ∈{0, 1/2 
,1} and for Nϑi = 4, we have ωnr = ηi ∈{0, 1/4, 1/2 ,3/4, 1}. The “normal form” payoff 
matrix G1 gives the total payoff for an agent i playing against this fictitious NR 
player. According to (Monderer and Shapley, 1996), the best-reply sets and domi-
nance-orderings of the game G1 are unaffected if a constant term is added to a 
column (i.e. C− Hi). The coordination game matrix G2 in Table 1.b is said to be 
“best reply equivalent” to the matrix G1 of Table 1.a. However, the values in G2 
do not indicate the cumulated payoffs, contrary to the value in G1, but are a direct 
measure of the cost - the risk in the sense of (Harsanyi and Selten, 1988) - of a 
unilateral deviation from the coordinated solution (ω ω= nri ) in the case of the 
pure strategy framework. 

Table 1. Payoff matrix for an agent i and best reply equivalent potential game 

a - game G1 ωnr = 0 ωnr = 1 b - game G2 ωnr = 0 ωnr = 1 

ωi = 0 0 0 ωi = 0 C− Hi 0 

ωi = 1 Hi − C Hi − C + J 

 

ωi = 1 0 Hi − C + J 
Player i in rows, fictitious NR Player - indexed nr - in columns 
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Figure 1.a presents a (symmetric triangular) pdf distribution and related best 
reply for a given cost C and a particular value of the IWA. If C − J > Hi, then 
never adopt (ωi = 0) is the strictly dominant strategy for all possible values of ηi 
(agents of the type (0) in the light grey zone on the left). If Hi > C, always adopt 
(ωi = 1) is the strictly dominant strategy for all possible values of  e

iη  (agents of 
the type (1) in the dark grey zone on the right)/ If C > Hi > C − J then the agent’s 
virtual surplus i i iV H C Jη≡ − +  may be either positive or negative depending on 
the values of the rate of adoption within the neighbourhood iη . These agents are 
conditional adopters and said to be of the type (2). Within these agents, only those 
with iV 0>  will adopt thanks to the social influence (hashed region). The relevant 
economic cases are the ones with (at least some) agents of type (2). 

Figure 1.b exhibits a distribution of agents’ type in the space (J, H − C) for the 
symmetric triangular distribution on [-a,a]. In the south-west light grey zone there 
are only agents of type (0), while in the north-dark-zone there are only agents of 
type (1). In the white zone there is a mixture of at least 2 types of agents, with nec-
essarily some agents of type (2). If H − C > a − J, there is no agents of type (0). 
Conversely in the south zone, where H − C < −a, there is no agent of type (1) If 
both conditions hold then all agents are of type (2), corresponding to the hashed 
triangular zone in the east on figure 1.b. This implies a sufficiently strength inten-
sity of social effect, with respect to the dispersion of the preferences, that needs to 
be relatively moderate: J_>_2a.  

  

Fig. 1. Distribution of agents with respect to their type, on the pdf and in the space 
(J, H − C) for the symmetric triangular distribution on the interval [-a, a]. 
Source: (Phan and Semeshenko 2007) 

In the case of global social influence (full connectivity) and bounded distribution 
of IWA, dominance-ordering analysis allows us to predict the issues of some clas-
sic configurations (i.e. symmetric Nash equilibrium), where all agents have the 
same structure of best reply. But this may be done for only some special cases. In 
more general situations, tools from statistical mechanics are necessary. In the case 
of local neighbourhood studied here, any simple result of that kind is available and 
probabilistic approach or numerical simulations are required. Within an approach 
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of ACE as complement of traditional mathematical models, we compare in the two 
next sections results from the probabilistic approach with infinite size population 
with results from agent based simulation for finite size population. 

3. Collective Behaviour, hysteresis and local frozen domains 
with local externality: probabilistic approach for infinite size 
population and simulation approach for finite size population. 

As suggested before, the GNP model, as a socio-economic version of Quenched 
RFIM model, has some significantly different properties with respect to the BD 
model. Firstly, In the case of a change in the external field (i.e. cost variation) a 
particular equilibrium depends on the previous equilibrium, but does not depend 
on the order in which the agents change their behaviour (i.e. adoption or not) dur-
ing the avalanche. In other words, from the simulation point of view, both parallel 
and sequential updating drive to the same equilibrium. Secondly, the interesting 
property of Sethna's inner hysteresis phenomenon (Sethna et al., 1993) can be ob-
served. These results from the return point memory effect: starting from a given 
equilibrium, if we change the cost by a given value and reverse the change by the 
same value, the system remembers its former state and returns exactly to the equi-
librium point of departure. The corresponding trajectory is called “inner loop” or 
“minor hysteresis” (Sethna et al. 2005). Finally, in the special case where we 
change the cost monotonically for a homogeneous state (everybody adopts or no-
body adopts) the final equilibrium does not depend on the rate of variation in cost. 
A dramatic change from C1 to C2 or a succession of smaller monotonic changes 
from C1 to C2 drives to the same state. In this section, we experiment the effect of 
local social influence in discrete choice adoption process based on the GNP model 
by means of finite size population, agent-based simulation on the multi-agent plat-
form “Moduleco-Madkit” (Gutknecht and Ferber, 2000; Phan, 2004). Section 3.1. 
and 3.2 compare analytical results with simulated outcome in the case of the cycli-
cal one-dimensional nearest neighbourhood network (circle). Section 3.2. is de-
voted to the calculus of the inner loop. Section 3.3. presents simulation outcome in 
the case of the cyclical two-dimensional regular network (von Neuman 
neighbourhood on a torus). 

3.1. Starting from a homogeneous state without adoption to complete 
adoption and return: the larger hystersis loop. 

Hysteresis within the Quenched RFIM is somewhat different in nature from the 
hysteresis used by economists that arise from a delayed response of a system (time 
lags) to change in the external parameter (here cost). First accounts of such differ-
ence are (Amable et al. 1994) about the wage-price spiral and zero-rot dynamics. 
Previous application of hysteresis in Quenched RFIM in socio-economic models 
are (Galam 1997: Phan et al. 2004). In the case of finite population, there are a 
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very large number of equilibria and related thresholds between them. In this sec-
tion, we use methodology and results from physics (Shukla 2000) established in the 
ferromagnetic case (J > 0) for one dimensional, nearest neighbourhood, cyclical and 
infinite size network. In that case, the conditional probability of adoption of equation 
(4) can be expressed in a finite number of occurrences (Table 2 and Fig. 2) 

 
Fig 2. Agent’s choice with respect to their IWA and neighbourhood state (sym-
metric triangular distribution). 
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Table 2 Probability of adoption for a given state of neighbourhood { }i 0,1/ 2,1η ∈  
For a given cost C, the probability of adoption of an agent is: 

( ) ( ) ( ) ( )i i 2 i 1 i 0P 1 C P 1 .P P 1 / 2 .P P 0 .Pω η η η= = = + = + =  (5) 

( )
( ) ( )

( ) ( ) ( )
( ) ( )

i
2

i i 1 i

i i 1 i i 1 i
2

i i 1 i

with: ( C ) P 1 C

P 1 P 1 C, 0

P 1 / 2 2.P 1 C, 0 P 0 C, 0

P 0 P 0 C, 0

η ω

η ω ω

η ω ω ω ω

η ω ω

±

± ±

±

= =

= = = =

= = = = = =

= = = =

 

Where: ( ) *
i 1 iP 1 0 P ( C )ω ω± = = ≡ can be calculated exactly in the infinite case. 

The probability that my neighbour adopts before me is equal first to P0 (the prob-
ability of type (1), then adopts even if no neighbour has adopted before). One must 
add again the probability for my neighbour to be of type 2 but to adopt as soon as 
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the next neighbour has adopted, since this next agent ( i 2ω ± ) is of type (1). The 
corresponding join probability is equal to [P1−P0]P0. At the level 3, one must add 
again the probability for my neighbour and the next agent to be of type 2 but to 
adopt as soon as the next neighbour has adopted, given the probability that this 
next agent ( i 3ω ± ) is of type (1). This join probability is equal to [P1−P0]2P0,  and 
so on... Summing over all cases: 

( )

( )

m k* 0
i 1 i 0 1 0

m 1 0k 0
* 1

i 1 i
1 0

P
P ( C ) P 1 C, 0 lim P P P

1 P P

1 P
1 P ( C ) P 0 C, 0

1 P P

ω ω

ω ω

±
→∞ =

±

≡ = = = − =   − −  
− − ≡ = = =   − −  

∑
 

(6)

1 2 3

0.2

0.4

0.6

0.8

1
η

C  
Fig. 3: Theoretic and simulated values (dot) for the cost-down branch of the main 
hystersis for: N = 1156 agents, Nϑ = 2 (circle); J = 4: H=0;  

Through equations (5) and (6), the global equilibrium rate of adoption in the popu-
lation for a giving cost C is equal to the probability of adoption of an agent taken 
at random within a symmetric triangular distribution of IWA: 

( )i( C ) P 1 Cη ω+ = =  (7)

The upper half branch of the main hysteresis, for decreasing C from complete 
adoption to zero can be obtained by symmetry: ( C ) ( C )η η− += − − . Figure 3 pro-
vides a comparison between these theoretic values of the main hysteresis and the 
simulated ones, based in finite population experiments (here 1156 agents). 
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3.2. The inner hysteresis loop: reversing the Cost from an arbitrary point on 
the exterior loop. 

In the limit of quasi-static driving (the change in prices remains constant within an 
avalanche), starting from a point on the upstream trajectory (grey) for η = 40%, 
and C = 1.25 a backtracking increase in cost C induces a less than proportional 
decrease (avalanche) in the number of customers (black curve, upper inner loop) 
until C = 2.49 and η = 30%. Then after reversing the cost changes at C = 2.49, as 
the cost decreases back to the initial value (grey curve, lower inner loop) the sys-
tem returns precisely to the same state from which it left the outer loop (C = 1.25, 
η = 40%). The inner loop can also go from a branch of the main hysteresis loop to 
the other. For example, starting at C = 1 and η = 68%, a backtracking increase in 
cost C induces a cross-trajectory between the upstream and the downstream 
branch of the main hysteresis loop. This cross-trajectory finishes at C = 2,93 and η 
= 30%, when the equilibrium points are those of the main hysteresis. As estab-
lished analytically, that confirms there is a multiplicity of equilibria, depending on 
the previous state of the system (path-dependence). Figure 3.b exhibits separated 
homogeneous domains (or cluster) in the network, due to the dominance of posi-
tive or negative effects of social influence as well as a particular distribution of 
heterogeneous IWA, enforced by both locality and finite size effect. 
 
 

0%

20%

40%

60%

80%

100%

0 1 2 3 4
C

Fig. 4.a Sethna's inner hysteresis 
J=4,  N = 2 (circle) 

 
Fig. 4.b homogeneous domains (1D-clusters) 
within the network for η=40% C=1,27 

As previously, it is possible to provide some hints to calculate the probability of 
adoption starting from an arbitrary point of the exterior loop. The method used 
here follows the work of (Shukla 2000). For the reversing formula and complete 
calculations in the case of the symmetric triangular pdf, see the long version of 
this work (to be presented at CEF 2007). This calculus is more difficult than in the 
previous case, because the choice of adoption depends now in a non trivial way on 
the rate of adoption in the neighbourhood, which depends itself directly or indi-
rectly on the state of the other agents over the network. The probability of adop-
tion between the two branches of the external hysteresis is conditional to the cost 
C for which the backtrack starts. These analytical results fit correctly the numeri-
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cal simulations in the case of finite population experiments (see long version for 
CEF 2007)). For a given cost C’, with backtracking at C, the probability of adop-
tion of an agent is: 

( ) ( ) ( ) ( ) ( )i i 2 1 0P 1 ,C' C P 1,C Q C',C Q C',C Q C',Cω ω= = = − − −  

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )( ) ( ) ( )

( )

( ) ( )( )

i
2

2 2 2
*

1 a b 1 1
2

0 a b 0 0
* *

2 1
a

1 1
*

2 2
b

1

with: ( C',C ) P 1 C',C

Q C',C P C P ( C ) P ( C')

Q C',C 2.P C Q C',C Q C',C P ( C ) P ( C')

Q C',C Q C',C Q C',C P ( C ) P ( C')

P C 1 P ( C ) 1 P C 1 P ( C )
Q C',C

1 P ( C ) P ( C')

P C P ( C ) P ( C')
Q C',C

1 P ( C

η ω= =

= −

 = + − 

 = + − 
 − + − −  =

− −

−
=

− ( )1) P ( C')−

 

(8) 

3.3. The two-dimensional von Neuman neighbourhood network (Torus) 

There is no analytical result at this time for the two-dimensional, cyclical network 
with von Neuman neighbourhood (Torus). But the example of figure 5 suggests 
that both Sethna's inner loop and homogeneous domains remain quite similar. 

0%

20%

40%

60%

80%

100%

0 1 2 3 4
C

 
Fig. 5.a Sethna's inner hysteresis J=4,  
N = 4 (Torus) 

 
Fig. 5.b homogeneous domains (2D-
clusters) within the for η = 40% 
C=1.41 
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5. Conclusion 

Using methodology within a framework of statistical physics, we illustrated the 
stationary properties for particular cases of symmetric triangular distribution of 
IWA under local interactions. Results of the simulation allow us to observe nu-
merous complex configurations on the adoption side, such as hysteresis, and 
Sethna’s inner-loop hysteresis. This complex social phenomenon depends signifi-
cantly on the structure and parameters of the relevant network. Finally, the last 
section opens the question of finite size effects, also adressed by (Glaeser and 
Sheinkman, 2002; Krauth, 2006) among others. Such preliminary results in the 
case of simple, regular network suggest new fields of investigation, as opposed to 
a standard focus on conditions of uniqueness of equilibrium, under a “moderate 
social influence” assumption (Glaeser and Scheinkman, 2002). It would be inter-
esting in the future to compare more systematically the analytical predictions 
against the simulation results and to study the statistical properties of such a phe-
nomenon for different values of J and different network’s structure. 
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