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Abstract

This paper provides a short introduction to Agent-based Computational Economics (ACE), in
order to underline the interest of such an approach in cognitive economics. Section 2 provides a
brief bird’s eye view of ACE. In section 3, some interesting features of the Santa-Fe Approach to
complexity are then introduced by taking simple examples using the Moduleco computational labo-
ratory. Section 4 provides a short introduction to the object-oriented architecture of the Moduleco’s
framework. Section 5 underlines the interest of ACE for modelling and exploring dynamic features of
markets viewed as cognitive and complex social interactive systems. Simple examples of simulations
based on two cognitive economics models are briefly discussed. The first one, deals with the so-called
exploration-exploitation compromise, while the second deal with social influence and dynamics over
social networks .

An abridged version of this paper is published as : ”From Agent-Based Computational Economics
towards Cognitive Economics” in Bourgine P., Nadal J.P. eds. (2004) Cognitive Economics : An
Interdisciplinary Approach ; Springer Verlag Others papers by the same author are available at:
http://www-eco.enst-bretagne.fr/∼phan/papers/

1 Intoduction

Leigh Tesfatsion [86] defines Agent-based Computational Economics (ACE) as “ “ the
computational study of economies modelled as evolving systems of autonomous interacting
agents. Starting from initial conditions, specified by the modeller, the computational econ-
omy evolves over time as its constituent agents repeatedly interact with each other and learn
from these interactions”. A growing proportion of ACE uses “ computational laboratories”
(CL); i.e a multi-agent framework, based on object-oriented languages. In such a frame-
work, the modeller has few codes to write and can use different kinds of pre-existent agent
types, interactions - communicationsstructures, rules etc. CL allows us to study complex
adaptive systems with multiple interacting agents by means of controlled and replicable
experiments. Moreover, CL provides “ a clear and easily manipulated graphical user inter-
face that can permit researchers to engage in serious computational research even if they
have only modest programming skills” [85]. In the Moduleco CL [72] used for this chapter,
ACE embodies the two sub-perspectives of cognitive economics: the “ epistemic”, one and
the “ evolutionary”’ one [90]. More specifically, the “ evolutionary” perspective is taking
closer to the Santa Fe’ approach (SFA), the “ complex adaptive systems” paradigm [3, 6].
A key feature of those models is viewing the emerging order as a product of the system
dynamics (system attractor), and more specifically of its element interactions [14]. At



this time, the epistemic perspective is less developed within ACE, but some authors are
attempting to develop some tasks on the evolution of learning representation, but mainly
in an evolutionary perspective.

This chapter provides a brief bird’s eye view of ACE, and complexity-related concepts
(section 2 and 3). Section 4 deals with dynamics over social networks. The effect of com-
munication structures’ topologies upon dynamics is discussed using very simple examples.

2 Agent-based Computational Economics and multi-agent
systems in economics

This section provides a bird’s eye view of the principles and applications of ACE in eco-
nomics, and underlines the interest of ACE for modelling markets viewed as cognitive and
complex social interactive systems.

2.1 Agent Based Computational Economics

Because many surveys about ACE are available [82, 83, 84, 85] we only outline in this
section the main topics of this research area, some references and questions raised by this
growing literature. Three special journal issues in 2001 devoted to ACE provide a large
sample of current ACE research ( [1, 2], IEEETEC 2001). Tesfatsion roughly divides
this research area into eight topics : (i) Learning and the embodied mind; (ii) evolution
of behavioural norms; (iii) bottom-up modelling of market processes; (iv) formation of
economic networks (v) modelling of organisations, (vi) design of computational agents for
automated markets; (vi) parallel experiments with real and computational agents (viii)
building ACE computational laboratories [85]. In addition, LeBaron [48] proposes some
suggested readings in agent-based computational finance and a “ builder’s guide” for such
models [49]. Finally, Axtell and Epstein, authors of a book which has become a reference
in this field : Growing Artificial Society, Social Sciences from the Bottom Up [28], provide
methodological issues ( [9, 10] see also, among others, [31]. Let us note that topic (i) is
close to the epistemic sub-perspective of cognitive economics, while topics (ii) and (iv) are
more related to the evolutionary sub-perspective. Topic (iii) is concerned as much with
epistemic as with evolutionary, because the market process involves both individual and
collective learning .

Why Agents? For Axtell [9] there are three distinct uses of ACE: (1) classical sim-
ulations, (2) as complementary to mathematical theorising and (3) as a substitute for
mathematical theorising. In the first case, ACE is used on the one hand as a friendly and
powerful tool for presenting processes or results, or, on the other, as a kind of Monte-
Carlo simulator, in order to provide numerical results. The latter case is often used by the
evolutionary approach (like Dosi, Marengo, Yildizoglu, among others. . . ) in the case of
intractable models, specially designed for computational simulations . In this chapter, we
focus on the middle case, when ACE is used as a complement to mathematical theorising.
Axtell mention several cases relevant for this category. This is, for example, the case when
an equilibrium exists but is uncomputable or is not attained by bounded rational agents,
or is unstable, or realised only asymptotically in the (very) long run. This is also the case
where some parameters are unknown, making the model incompletely solvable.
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Cognitive economics is specially concerned with the last topic, where the equilibrium
position is known only for a simple interaction network. It is the case, for instance with
statistical mechanics - related models reviewed by [73], such as, for example, [62, 74]. In
this latter, we know analytically the optimal asymptotic monopolist pricing in two polar
cases: without externality or with global externality. Analytical results may be possible
for the homogeneous regular case. But in the mixed case (including the so-called “ small
world”, to be presented in the following) characterised by both highly local and regular
connections and some long range, disordered connections, numerical (statistical) results
are often the only possible way.

From an epistemic point of view, the highly path dependent process of diffusion upon
such networks involves learning i.e. (i) belief revision (for instance, in the case when a
monopoly faces customers randomly distributed on a given network, even if the initial
distribution is well known, as in [62, 74] see also, [50, 51] or (ii) epistemic co-ordination
in the case of rational agents playing a game with their nearest neighbourhood (as in the
Blume-Brock-Durlauf approach reviewed by [73]).

From an evolutionary point of view, attention may focus upon “ classical” complex
adaptive systems dynamics [93] with a SFA flavour. The following two sub-sections intro-
duce some of these concepts, such as emergence, attractor, phase transition and criticality
based on examples taken from Moduleco.

2.2 Simulating implies understanding [26]: markets viewed as cognitive
and complex social interactive systems modelled by the way of ACE
on multi-agent software.

Cognitive economics is an attempt to take into account the incompleteness of informa-
tion in the individual decision making process, on the one hand, and the circulation and
appropriation of information within social networks , on the other hand. Because of in-
completeness of information, in cognitive economics, learning is a central feature both at
individual and collective levels. Multi-agent modelling and simulation of complex adap-
tive systems are complementary tools as well as experimental economics to investigate this
field.

Following Kirman [40, 41, 44] a market can be viewed as a complex and cognitive
informational and interactive system, socially produced. From this perspective, ACE
is a promising approach for investigating market mechanisms [88, 45]. More specifically,
multi-agent framework appears to be a pertinent tool for understanding observable market
phenomena. In such a system, buyers as well as sellers may be represented by a suitable
software agent. Each agent is then linked by communications structures to other entities of
the systems. In this way, such an agent may exchange information with his environment, to
adapt his behaviour given this information (individual learning). As a consequence, each
agent contributes in this way to the adaptation of the whole system (collective learning,
following [25, 89].

To explore market properties in this approach, knowledge of the general properties
of the complex system dynamics [93] is the first step. At a lower level of abstraction,
a cognitive economics approach gives more consistency to both individual behaviour and
social representations (Orléans [68]), taking the more generic properties as given. An inter-
disciplinary multi-level interpretation of both properties and assumptions requires specific
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reflection, like, for instance, [73], for a discussion of significance in the use of statistical
physics by economists.

In ACE, economic agents are generally heterogeneous in some attribute. When agents
have some heterogeneity by themselves, without any interaction, we call this characteristic
idiosyncratic heterogeneity. When agents interact, the combination of their adaptive or
learning capacities together with their insertion within a specific structure of interaction
generally drive the agents towards heterogeneous individual trajectories, even if they are
initially homogeneous. We call this situation interactive heterogeneity. Beyond the an-
alytical results that it is sometimes possible to obtain in generally very simplistic cases,
it is interesting to undertake “ in silico ” experimentations. This means simulations of
more complex cases for which analytical results do not exist. For example, [74] explore a
large range of network structures for a discrete choice model in a monopoly case with (and
without) externality. Simulation allow exploration between two polar cases, for which
we have analytical results; that is, the case without externality and the case with global
externality (see section 4 and [73]). These kinds of models grant a significant place to the
circulation of information and the adaptive phenomenon. As a consequence, the study of
processes matters as much as the analysis of the asymptotic states to which processes may
eventually lead.

Following the method suggested by the autonomous agent systems literature, ACE
first produces generic results, i.e. common to natural, living or human systems. Secondly,
these results, which are highly abstract, must be reinterpreted in the field of a specific
scientific domain, by a specific discussion of all assumptions, postulated relationships and
behaviours. Some additional assumptions may be added or some others removed. The
ultimate step is the most difficult to formalise. Human agents have a very specific char-
acteristic, which radically distinguishes then from particles or ants. A human agent is an
epistemic one. A human agent may integrate emerging phenomenon in his representations
and change his behaviour according to this revising process. So, a first step in modelling
social phenomena by a large multi-agent framework, is to ask (following [23]: when is
individual behaviour (like conceptual capacities) negligible or when is it decisive?

The general conceptual framework for such research was mainly constituted during
the 90’s, even if some important contributions were produced in the two decades earlier.
Multi-agent systems [29], which are well adapted to this approach, were originally strongly
linked with “ artificial life ” [47, 46, 19]. Generally, the Agent is defined as referring to a
software component that is capable of acting in order to accomplish a specific task. Multi-
agent platforms are oriented towards simulations and in silico experimentations. The most
famous multi-agent platform is SWARM, initiated by Langton (see [56] for applications
to the economic field). Others multi-agent platform dedicated to economics problems
are among others, ASCAPE [70], CORMAS, LSD [87], and RePast (see the Annex for
references). For this chapter, we use MODULECO, a multi-agent plateform, built in java,
an object programming language. Modulecoi is mainly designed to model and to simulate
dynamics of interacting population on a network.
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2.3 Moduleco, a multi-agent object-oriented framework using medium
to formalise agent interactions

Object-oriented programming (OOP) languages are particularly adapted to multi-agent
framework (XAP). ”Objects” are program structures that hold (encapsulate) both data
structures and procedures (methods) for operating on those data in a template called
”classes”. That is, for each object or class, one must specify the properties of the object,
the data structure it can hold and the methods (or services) it offers.

In some XAP, agents are naturally a single class (or object). In order to think by anal-
ogy, such an architecture is very intuitive, and useful for semantic purposes. In this way,
the software architecture is closer from the conceptual organisation of the problem than to
a specific procedural way to solve such a problem. Moreover, OOP provide a good concep-
tual environment to view the different level of abstractions related to a specific problem,
in the spirit of ”artificial system” research program, and to handle interdisciplinary analo-
gies. Finally, the diagrammatic presentation of UML (Unified Modelling Language) makes
easier the dialog between computer scientist and economist, and can help to enhance the
economic model semantics.

An important feature of OOP is inheritance. Following the inheritance principle,
classes are organised in a hierarchical way through a degree of abstraction. Subordinate
classes inherit the methods and other attributes of higher classes, but add additional ones
or replace the higher classes’s methods and attributes with more specialised substitutes.
For instance, in Moduleco, at the more abstract level an ”agent” can be viewed as a cellular
automaton, and needs at least two methods: a ”compute()” one and a ”commit()” one.
This means that each agent makes a computation, and validates this computation by
changing his ”state” (selected variables).

In the Ising ferromagnetic model, the ”agent” is a particle, who only reacts to his
environment (heath, external field) by computing the effect of these interactions, and,
maybe, by changes it states as a result of these computations. In a monopolist’s market
model with externality, an ”agent” is a (potential) customer who computes information
(such as prices, neighbourhood choices), and, maybe, changes his state as a result of these
computations (to buy or not). Both would inherit the methods from the more generic
class ”agent”. But the specific methods and instances of agents generally differ between
particles and customers. More specifically, a customer maybe either a ”reactive agent”
or a more ”cognitive one”. The former behaviour is closer to a particle, for example, if
we assume myopic behaviour. The latter may be more sophisticated, especially in the
case of an epistemic agent, who has the ability to model the behaviour of others in a
strategic way. Moreover, the monopolist is also an agent, as well as the ”market place”.
Finally, at the implementation level, for a given class, individual agents are generated
by ”instantiation” i.e. creating an ”instance” from its classes. In some way, each agent
has a specific ”life” in the computer. n the OOP, all agents instantiated from the same
class share the same methods, but, thanks to the ”encapsulation principle”, each agent is
clearly distinguishable by his own data.

In the OOP way, Moduleco is a ” framework of classes ” i.e. a set of highly interrelated
classes defining the structure of many possible applications in the field of multi-agent sim-
ulation. Framework are in some way the equivalent in OOP of classical function libraries.
In the procedural approach, libraries are sets of functions that are reusable just by calling
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them. It was implemented once and for all, and now, it is called without being coded
again. So, framework are kinds of libraries but they offer the new advantage that comes
from the inheritance concept of OOP: dynamic binding allows the framework to call the
new code. OOP makes symmetric the relationship between the framework and its client
classes (who are also the descendants of some of its classes).

Figure 1: Framework are more than a library thanks to dynamic links.

Thus, using a framework means calling its functions (as for a library) but also being
called by it when functions need to be specialised. This feature enables framework to
share (concepts - classes, functions - methods, data) much better than usual (non-OOP)
programming techniques. For example, in Moduleco the scheduling of the compute() /
commit() methods (agents update their state simultaneously or sequentially) is managed
at the framework level. As a result, the thematic model builder (the economist) has
nothing to program, and has only to select in option on the Graphic Interface.

In order to build a new model from a framework, the model builder, in the simplest
case, has only to redefine (extend) some classes of the framework by inheritance. For more
complicated applications, some additional specific classes may have to be created.

Figure 2: Abstract agents in Moduleco

The conceptual model of Moduleco relies on CAgent class which is the root of the
agents hierarchy. The CAgent class, called the ”interface” defines only a list of methods
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necessary to be an ”agent”. The direct subclasses are Eagent(s), which represents all
individual agents, and EWorld that represents all set of agents, but that can be consid-
ered as a single ”composed” agent. In that way, an EWorld can be a sets of Eworld(s).
This recursive property may be useful in the case where we want to model a pyramid of
hierarchical organisations or in the case of an ”eductive” agent that would ontologically
define its own representation of the world where it evolves (including itself). Special-
ized Eworld(s) are ENeighbourWorld which are composed of CAgents interconnected via
a Neighbourhood and EMobileWorld which are composed of EPlaces, that may receive
EMobileAgents that move from EPlace to Eplace (used, for instance by Schelling’s model
of segregation). ENeighbourSmallWorld and ENeighbourRandomPairwiseWorld are sub-
classes of ENeighbourWorld, which implements specific static or dynamic transformations
of the Neighbourhood, such as ”small world” or ”random pairwise matching”.

In Moduleco, all relationships between agents are supported by specific Mediums. Such
classes define how agents interact and how they are connected together. For example,
NeighbourMedium allows Moduleco to define the set of neighbours an agent can have.
Once his neighbourhood defined, an agent can invoke the services of his neighbours, such
as getting specific information, for instance. Neighbours have specific subclasses for each
specific topology such as WorldZone (all agents in the grid), NeighbourVonNeuman (North,
South, East and West agents of the current agent on a grid) and Neighbour8 (the 8
closest agents on a circle). As a result, the communication topology is defined by the
Neighbourhood. The grid is just an easy way to represent agents on a screen (that is
offered by default, but that can be changed, as usual). For heuristic purposes, a circle
representation is available, useful for the one-dimensional, periodic lattice.

Figure 3: Neighbourhood in Moduleco
WorldZone NeighbourVonNeuman NeighbourMoore BoundedRandomZone

A random neighbourhood is also available like with, for instance, a BoundedRandom-
Zone topology. A dynamic neighbourhood is also available, for instance with random
pair-wise coupling at each step or neural network activation of virtual links. Finally, it is
possible to perturb a regular network by rewiring some links, in the way of the so-called
“small-worlds”.

Market is another subclass of medium. This class supports interactions between agents
with two possible roles: buyer and seller. One agent may play both roles. In order to
extend a medium in a specific model, the modeller needs to specify explicitly all the as-
sumptions related to the information communication structure of the model such as:
what kind of information is known by an Agent ?
how does this information evolve ?
how is this information communicated between Agents ?
As Axtell (2000) underlines, the effect of the activation regime on the simulation result is
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very important. At each period of time, the area that evolves is activated by the ZoneSelec-
tor. The more often used activation zones are: world (all the agents) or random individual
zone (one agent, taken at random). The activated agent evolution is defined first by the
method compute() used to modify internal agent states (on the basis of local values, or by
references to other objects of the model). In the next step, commit() validates the next
computed state as the actual new state. Strategies of evolution are managed by a Time
Scheduler. With the LateCommitScheduler, agents choose simultaneously their behaviour
given the information available at the end of the previous period, and produce information
available at the beginning of the next period. With the EarlyCommitScheduler, agents
choose sequentially their behaviour given the information available at the moment of their
choice. The information produced is immediately available for those agents who can access
this information, trough their neighbourhood.

Finally, in a XAP, it is easier to implement variants of the same model by changing
the scope and the evolution of the simulations. Axtell [10] has underlined the effects of
distinct agent interaction and has compared activation structures in several multi-agent
models. On the activation regime side, Axtell [10] observes often indistinguishable results
at the aggregate level, but sometimes significant differences.

3 Basic concepts of multi-agent systems with network in-
teractions.

complex adaptive systems dynamics [93, 80] may change with circumstances. There is
no proportionality between cause and effect. A very interesting feature of such a system
is classical in the physics of disordered systems: phase transition ( [24, 30], [35] for an
economist’s point of view). In the simplest case of phase transition, the system only
bifurcates between two opposite states, but many other dynamic behaviours may arise.
Physicists attribute sometimes such phenomena to symmetry breaking [4, 30]. Broken
symmetry gives rise to the appearance of a new phenomenon that did not exist in the
symmetric phase. Complex adaptive systems, strongly non-linear, in many cases resist
classical methods of analysis (reductionism) and yet they may be governed by very simple
rules.

In this section, we outline the main features of SFA by taking some simple examples
using the Computational Laboratory “Moduleco”, we introduce as simply as possible three
basic concepts of complexity in multi-agent systems. First opening by phase transition
and complex dynamics in the case of a simple spatial evolutionary game, we introduce
next the role of the topology of communication structures in collective dynamics, with the
so-called “ small world”, within the same evolutionary game framework. We raise finally
the question of emergence with the Schelling’s Model of Segregation [77, 78, 79].

3.1 Basic concepts of multi-agent systems (1): complex dynamics in
adaptive systems

When individual actions are made to be interdependent, complex dynamics may arise.
That is the case, for instance, when agents locally interact over a specific network. [44],
discusses this question for market studies. In order to illustrate such a phenomenon, a very
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simple model of the spatial prisoner dilemma is presented here. The simplest version (on a
one dimensional periodic lattice) exhibits only a phase transition between two symmetric
states: complete defection and complete co-operation. More complex behaviour may arise
when the connectivity increases, like in the [57, 58] model, where agents interact on a
two dimensional periodic lattice (torus), or when the network is not a regular one, as in
section 4. The introduction of random noise may also produce different results, but here
we only consider the determinist mechanism.

Figure 4: the simplest one dimensional spatial game

176 > X ≥ 92 : defection

is contained in a ”frozen zone”

(J1, J2) J1/S1 J1/S2

J2/S1 (X,X) (176, 0)

J2/S2 (0, 176) (6, 6)

S1 : co-operation (black)
S2 : defection (white)

6 < X ≤ 91: : the whole

population turns to defection

In the generic model, agents play a symmetric game (here, a prisoner dilemma) with
each of their “ neighbours” on a lattice. At a given period of time, each agent plays the
same strategy (S1 : co-operation or S2 : defection) in all these bilateral games. At the
end of the period, each agent observes the strategy of his neighbours and the cumulated
payoff of their strategy. But the agent has no information at all about the other games
played by his neighbours. He observes only the cumulated payoff linked with this strategy.

At each period of time, agents update their strategy, given the payoff of their neigh-
bours. Assuming myopic behaviour, the simplest rule is to adopt the strategy of the
last neighbourhood best (cumulated) payoff. Another rule (used by [37] is to adopt the
strategy of the last neighbourhood best average (cumulated) payoff. This latter rule is
less mimetic, because one may interpret this revision rule as a kind of estimator of the
expected cumulated payoff of a given strategy (for the model maker, that is a conditional
expected payoff given the strategies of the neighbour’s neighbourhood). Finally, bilateral
games plus the revision rule constitute a special kind of evolutionary game [59].

In the simple model of Figure 4, agents play a symmetric game (prisoner dilemma) with
each of their two neighbours on a circle (one-dimensional, periodic lattice). The revision
rule is the last neighbourhood best cumulated payoff. If the payoff of the co-operation
against themselves is sufficiently high (S1 against S1 > 91), defection (S2) is contained in
a “frozen zone“ of 3 agents. In other cases (S1 against S1 < 92), the whole population
turns to defection. For N ≥ 32 this result is independent of the number of agents

In [57, 58], there is a population of co-operators on a torus (two dimensional, periodic
- in our example : 492 − 1 = 2400 co-operators). Each agent plays with his eight closest
neighbours (Moore neighbourhood). The revision rule algorithm takes into account the
payoff of the player’s strategy against himself.

As in the previous example, one makes an agent become temporarily a defector. For
a sufficiently high payoff of the co-operation against himself (S1 against S1 ≥ 101) the
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Figure 5: Complex dynamics between co-operation (black) & defection (white)

Light grey : defector who turns to co-operation (S2 > S1)
Dark grey : co-operator who turns to defection (S1 > S2)

Figure 6: Limit cycle closer to defection
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defection (S2) is to be contained in central zone of 9 agents. For 113 ≥ S1 ≥ 101, it is a
“frozen zone“ of defectors, for 129 ≥ S1 ≥ 114 a cycle of period 3 and for 157 ≥ S1 ≥ 130,
a cycle of period 2. This result holds for all populations, from 62 agents. At the contrary,
for a weak payoff of co-operation against itself the whole population turns to defection
after short transitory dynamics. For instance, for (S1 against S1 = 94) total defection
arises after 30 periods. For an intermediary payoff (in this case 99-100), the dynamic
trajectory becomes quasi-chaotic and produces beautiful geometrical figures (Figure 5).
In this particular case (S1 against S1 = 100), the trajectory converges (Figure 6) towards
a cycle of period 4 after 277 iterations. Such a phenomenon arises for a sufficiently large
population. For instance, for this set of payoffs at least 432 agents are needed in order to
induce a cycle of order 2, after 2138 iterations of chaotic behaviour.

In the special case of this model by May, Nowak, results do not really make sense in
economics. Nevertheless, three important phenomena appear in this simple case. First,
if agents’ behaviour are interrelated, strictly deterministic and identical agents with very
simple individual behaviour may produce both heterogeneity at the micro level and com-
plex dynamics at the macro level. Next, some critical values around the symmetric point
(between the co-operative “ phase” – or order – and the defective one) play an important
role in such dynamics. Finally, the nature of the dynamics depends on the topology of
interrelations.

3.2 Basic concepts of multi-agent systems (2): the role of the topology
of communication structures in collective learning: the so-called
“small world “

Following an important body of literature in the field of socio-psychology and sociometrics,
initiated by Milgram [61], the “ six degrees of separation” paradigm of a “ small-world” ,
Watts and Strogatz [92] proposed a formalisation in the field of disordered systems. The
original Watts and Strogatz (WS) “small world“ starts from a regular network where n
agents are on a circle (dimension one, periodic lattice) and each agent is linked with his
2.k closest neighbours. In the WS rewiring algorithm, links can be broken and randomly
rewired with a probability p. In this way, the mean connectivity remains constant, but
the dispersion of the existing connectivity increases. For p = 0 we have a regular network
and for p = 1 a random network.

Figure 7: Regular, random and “small-world” networks in Moduleco

(a) Regular network (b) Regular network (c) Random network (d) Small-world
connectivity k = 6 full connectivity connectivity constrained k = 4; 3 links rewired

Intermediate values between 0 and 1 correspond to the mixed case, where a lower
p corresponds to a more local neighbour-dependent network. In Moduleco, the actual
algorithm took h nodes, broke i links for each of these nodes and randomly rewired the
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broken links with other nodes. We have a parameter q = (hi)/n which plays a similar role
to p (Figure 7). A large scope of small world properties is now well known [91, 63, 96].
provides a short review of basic features. Barthelemy et al. [12] provide a typology of
small world, with related properties, including both WS and some varieties of “scale free“
topologies.

In economics, the small world has been applied to bilateral games [37, 36], the knowl-
edge and innovation diffusion processes [96] and market organisation [95, 74, 62] The
following example is drawn from work in progress [69] to illustrate the power of rewiring
in changing the interactive environment. For the spatial prisoner dilemma game (and a
larger class of bilateral games), Jonard et al. [37] have established (for the best average
payoff rule) that the stability of co-operative coalitions depends on the degree of regularity
in the structure of the network. In the following example, co-operation is unsustainable
within a regular network, but become sustainable within a rewiring disorder.

Figure 8: Symmetric introduction of defection in a network of co-operators

(J1, J2) J1/S1 J1/S2

J2/S1 (170, 176) (176, 0)

J2/S2 (0, 176) (6, 6)

S1 : co-operation (black)
S2 : defection (white)

Within the regular network case, the number of defectors grew and became stable for 100% of the population

The core of the model is the same as that of the spatial prisoner dilemma, but with a
one dimensional - periodic neighbour 4 structure (on a circle). To be clear, we have limited
the population to N = 36 agents (32 co-operators for 4 defectors). According to the best
neighbourhood payoff rule, each agent chooses the best cumulated payoff strategy in the
neighbourhood. The aim of this exercise is to improve the strength of a network against
accidental defection. That is, four temporary defectors are symmetrically introduced into
the network. When the network is regular, defection is the winner strategy, and diffuses
to the whole population (Figure 8)

In some cases, changes in the structure of the networks by minor modifications in
the neighbourhood of some agents allow co-operation to protect against defection. The
number of defectors increases at first and reaches roughly 60% of the population, but
a rewired link may reverse this evolution in a second step. In such a case (Figure 9),
defection decreases towards stabilisation at 11 %.

Table 1: Statistical results for 500 simulations
defectors 2 3 4 6 8 17 22 36 cycles

purcentage 10.2 11.8 16.6 0.4 1.0 0.8 0.4 32 16.8

Even if co-operation failed to hold in all cases of the regular network, a one link rewiring
is sufficient to limit to only 1/3 the percentage of cases with a totality or a majority of
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Figure 9: Making the network robust against defectors’ invasion by rewiring one link

defectors. Moreover, in roughly one half of the cases, defectors are limited to four or less
(as in Figure 9). First results of simulations (Table 1) suggest that the percentage of stable
co-operators becomes higher with sufficiently long range links, i.e. linked agents with a
sufficiently distant local neighbourhood.

3.3 Basic concepts of multi-agent systems (3): emergence versus gener-
ative social science

The Santa Fe approach to complexity [3, 6, 22] calls emergence a property of a complex
adaptive system that is not contained in the property of its parts. Interactions between
parts of a dynamic system are the source of both complexity and emergence. In some cases,
the resulting effects of interactions may seem to be random, even if they are produced by
deterministic rules as in the spatial dilemma evolutionary game. An interesting part of
the emergence process concerns the occurrence of some kind of order (coherent structures
or patterns) as a result of the system’s dynamics. This is the case with the dominance of
defection or co-operation in the spatial dilemma game. In this latter case, a stable structure
is the result of a selection process between pre-existing attributes of the entities (the
strategies). We denote this situation as the weak emergence phenomenon. In other cases,
the order may be a new structure which makes sense by itself and opens up a radically
new global interpretation, because this does not initially make sense as attributes of the
entities. We denote this situation as the strong emergence phenomenon. Strong emergence
imply a morphogenetic (cognitive) process in order to include in fine a well identified
representation of this new structure into individual and then collective consciousness.
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Atlan [7] proposes a suggestive interpretation of the relationship between order and
complexity, by defining complexity as “ un ordre dont on ignore le code ” (an order who
code is unknown). Formally, emergence is a central property of dynamic systems based
upon interacting autonomous agents. The knowledge of entities’ attributes and rules is not
sufficient to predict the behaviour of the whole system. Such a phenomenon results from
the confrontation of the entities within a specific structure of interaction. That is, better
knowledge of the generic properties of the interaction structures would make it easier to
have better knowledge of the emergence process (morphogenetic dynamics). To denote a
phenomenon as “emerging“ does not mean that it is impossible to explain or to model the
related phenomenon. For this reason Axtell [9] uses the word “ generative ” instead of “
emergence” in order to avoid transcendental meaning such as in British philosophy in the
30’s [60].

Figure 10: Interactions & emergent order

Schelling’s model of spatial segregation [77, 78, 79] is a precursory example of a strong
emerging phenomenon, clearly based upon social interaction. Schelling’s aim is to explain
how segregationist residential structures (like ghettos) may occur spontaneously, even if
people are not so very segregationist. The absence of a global notion of segregationist
structures (like the notion of ghettos) in the agent’s attributes (preferences) is a very
important feature of this model. Agents have only local preferences over their neighbour-
hood. Moreover, people have only very weak segregationist behaviour, but the play of
interactions generates global string segregationist results. In the original Schelling model,
agents are localised within a 8-by-8 checkerboard (Figure 11). Taking the “colour“ (on the
checkerboard) as the criteria of discrimination, the problem of each agent is to choose a
location given an individual threshold of acceptation for the proportion of other colours in
their neighbourhood. That is, agents interact only locally, with their 8 direct neighbours
(a so-called “ Moore ” Neighbourhood). There are not any global representations at all
about the global residential structure.

Agents have only weak segregationist local behaviour, in the following sense: each
agent agrees to stay in a neighbourhood with people that are mainly of another colour, on
condition that there are at least 37,5% with the same colour in the neighbourhood. More
specifically, Schelling uses the following rule: an agent with one or two neighbours will try
to move if there is not at least one neighbour of the same colour (with a tolerance of 50%
in the neighbourhood); an agent with three to five neighbours needs at least two like him
(33 %, 50% and 60% tolerance), and one with six to eight wants at least three agents of
the same colour (50%, 57,1%, 62,5% tolerance).

Schelling denotes by a fully integrated structure of the population a structural pattern
where there is alternately one agent of each colour in all directions; in other words, each
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agent (except at the edges) has four neighbours of one colour and four of the other. There
is no agent in the corners. At the edges, there are two (or three) similar agents alternately
among five neighbours, and two of each colour at the corners.

Under Schelling’s behavioural assumption, a fully integrated structure is an equilib-
rium (an order) because no agent wants to move. But, from this stable configuration, a
slight perturbation is sufficient to induce a chain reaction and the emergence of local seg-
regationist patterns. Specifically, Schelling extracted twenty agents at random, and added
five at random in the free spaces. By moving discontented agents, local segregationist
patterns appear, like in the java applet in figure 11.

Figure 11: Original (checkerboard) Schelling Model

a - Equilibrium with b - 14 discontented agents c - convergence after

integrated population (crossed) 4 iterations

(source : http://www-eco.enst-bretagne.fr/∼phan/complexe/schelling.html)

interactions are sufficient for the occurrence of spatial homogeneous patterns; spatial
segregation is an emerging property of the system’s dynamics, while spatial segregation
is not an attribute of the individual agents. Sometimes, integrated (non-homogeneous)
patterns may survive. Integrated structures are easily perturbed by random perturbations,
while homogeneous structures are more stable (frozen zones).

In Figure 11b, the discontented agents are shown by crosses. These agents move at
random towards a new location in agreement with their preferences. This move generates
new discontented agents by a chain reaction until a new equilibrium is reached. This may
be a state of perfect segregation, with clearly delimited ghettos, like in Figure 11c, or
locally integrated patterns may survive in some niches within homogeneous patterns of
populations.

In the Schelling model, ghetto formation is the non-intentional result of the composi-
tion of individual behaviour. The local intention (preference) of the agents is not to be too
isolated. Agents do not want to create a new organisation of space. Such a structure is
said to be “ emerging ” because it is not an attribute of the chosen space of the individual
agents before this kind of order emerges. In other words, agents do not choose between a
segregated spatial arrangement or an integrated one. They only randomly move whenever
they are discontent. A segregated spatial pattern is not the consequence of the behaviour
of a particular agent, but all the agents contribute actively or passively to the emergence
process, through social interactions. In the Moduleco multi-agent platform, agents are
really mobile over the locations. The main results of the Schelling model are robust over
different algorithms for the agents’ moves and different sizes of the network.

The creative principle of emergence is a central property of complex adaptive systems
. But the temporal effects of interactions upon structures do not appear necessarily as ho-
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Figure 12: Moduleco adaptation of the Schelling’s model.

mogeneous. One may observe long periods of stability (punctuated equilibrium) separated
by periods of crisis.

In a “linear” world, the proportionality principle applies by associating small effects to
small perturbations, while major perturbations are necessary to generate significant break
down. In an interactive world, dynamics are mainly non-linear. The principle of pro-
portionality is no longer valid and dynamics are generally non-linear. Similar magnitude
changes in some parameters’ or agents’ attributes may produce very different magnitudes
in the system’s reaction like, for instance, when chain reaction s and/or events like phase
transition occur (see [33, 30] and the effect of price change upon customers’ behaviour in
the next section).

4 Individual and collective learning and dynamics in a dis-
crete choice model

Given the subdivision of cognitive economics into an epistemic (individually centred) and
an evolutionary perspective, one interest of ACE is to allow us to integrate both dimensions
in the same framework. On the one hand, with CL such as Moduleco, it is easy to
model population dynamics with adaptive agents. On the other hand, the conceptual and
formal integration of both dimensions within a significant and coherent framework is a
real challenge.

This section presents first a very simple model of social influence drawn by Orléan,
which exhibit, after a given threshold, an informational inconsistency between the private
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(individual) level and the social one. Next, two models of dynamic monopoly allow us to
illustrate the role of information within a discrete choice market [5] viewed as a complex
and interactive adaptive system. The first one focuses upon individual learning at the
monopolist level, in an interactive decision theoretical approach, with bayesian features.
The second one focuses upon collective learning at the market level, where individual
demands are related though social influence within a communication network. In each
dimension taken separately, dynamics considerations are far from being trivial, and CL
appears to be a useful tool to investigate numerous variants of given problem by simulations
, where an exact solution exists only in the very simple case.

4.1 A very simple case of social influence (Orléan )

This model is the simplest from a set of models of social influence drawn by Orléan [65,
66, 67]. Analytic results are not presented here, and we focus only on the main intuitions
of this model: when external effects (social influence) are sufficiently strong, a broken
symmetry phenomenon can arise, here the bifurcation of a regime with one attractor
towards a regime with three attractors (one unstable, two stable). As a result, agents
could be locked-in for a significant period of time in a different state to the one that
results from individual preferences (or information) taken in isolation (see also [73] for a
statistical mechanics interpretation of this issue) In this model, the population of Agents
in the world have some beliefs about the state of this world. More specifically, the world
may be in two states, say 0,1. At time t0=0, 50% of the agents believe that this state is,
say 0 (the ”blue” ones); for all t¿0 an agent taken at random receives private information
on the state of the world and can change his opinion. The ”theta” parameter gives the
proportion of signals coherent with a state of the world at ”1”. In this simulation, theta
= 0.1 for both 0 ¡ t ¡ 200 and for 600 ¡ t. Between 200 ¡ t ¡ 600. theta turns out to be 0.9.

To take their decision, agents have two pieces of information: a private one (the theta
biased-signal) and the average opinion of their neighbourhood.

When the majority rule (”social information”) is in accordance with the private infor-
mation, an agent does not change his opinion. When the majority rule is not in accordance
with the private information, the agents are in a kind of ”cognitive dissonance” and may
change their opinion at random, according to their confidence in their private information.

Set mu as the probability of taking into account the private information only. Then,
1-mu is the probability of following the majority rule, so to be mimetic with the members
of this majority. When mu = 0 only private information matters. When mu =1, agents
are fully mimetics.

In the simulation below, mu = 0.1 for all agents until t=600; after which, mu = 0.9 for
all agents, so they became mimetics. As a result, social opinion is ”lock-in” in dominant
opinion of state 1, despite 90% of the private information, which suggested that we are in
state 0.

Orléan [65, 66, 67] provides evidence about the existence of a bifurcation of the asymp-
totic invariant measure of this process which became bimodal , for a smaller value of mu
(strong social influence) The following results are given for 3 neighbourhood structures:
World (the original model) Moore (8 neighbours) and VonNeuman (4 neighbours). In
these cases, the initial distribution is the same same seed for the pseudo-random genera-
tion), but not the exact random process. Results are quite similar for World and Moore.
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Figure 13: social influence & informational paradox in Orléan

In the Von Neuman case, each agent has only four neighbours, so it is easier to get outside
the lock-in. One can also observe the emergence of quasi-frozen zones, like in Shelling’s
segregation model (and more others, on that question, see for instance [93])

Remark: in another version available on Moduleco (following a suggestion by Orléan
himself), Agents no longer take their decision at random, but the world is composed of two
categories of agents: the mimetic ones and the non mimetic, which follow only their own
information. When the proportion of each category of agents is fixed at random at the
beginning of the simulation, previous aggregate results are preserved at least in the short
run. But interesting results arise when this proportion is endogenous, state dependent.

4.2 Individual learning and the exploration-exploitation dilemma

In order to illustrate individual learning in a market simulated on Moduleco, Figure 14
presents the graphic interface of a model by Leloup [50, 51, 52] and [53] of dynamic
pricing based on optimal bayesian learning by exploration-exploitation arbitration, using
the Gittins Index [32, 17].

In this model, we have a monopolist faced with heterogeneous customers whose in-
dividual reservation prices are non observable. In the simplest case, the distribution of
such reservation prices is initially known, except for a given parameter. In a more un-
certain case, the distribution itself is unknown, but the monopolist has some belief about
these distributions. Potential customers make binary choices (to buy or not) and the
monopolist has some a priori beliefs upon the statistical distribution of such reservation
prices. More specifically, the monopolist sequentially matches a single potential customer
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taken at random at each iteration. At each iteration, the monopolist can charge a price
that belongs to a discrete, ordered, finite set {p1, ..pi, ..pk}, where p1 is the minimal price
and pk the maximal one. These prices do not allow the agents to bargain : either the
agent buys at this price, or does not buy. That is, assuming a null cost without loss of
generality, at each period t, the monopolist has a profit of πt = pt if the agent buy, or
zero otherwise. Sequential profit flows are subject to a geometric discounting along an
infinite time horizon. In this model, idiosyncratic preferences of agents are given at the
beginning of the process. In order to be coherent with the following model, let us assume
a Logistic distribution for the willingness to pay. Without social influence between agents,
the resulting distribution is stationary. Let us remark that, in such a framework, the
monopolist’s problem is not to really to learn the initially unknown true parameter of
the distribution (the case of prior belief about distribution corresponds to the true - here
logistic - distribution). The monopolist’s dynamic problem is to maximise his discounted
profit by taking a locally optimal decision given the available information, according to a
bayesian decision approach. As in the pioneering model by Rothschild [75], in this dynamic
approach, incomplete learning may occur. This means that for an infinite period of time
(and a fortiori in a finite period of time), a seller following an optimal bayesian learning
process by exploration-exploitation arbitration at each point in time may obtain a sub-
optimal result. Moreover, self-reinforcing machine learning processes or other adaptive
learning procedures which are generally non-optimal at each point in time may produce
better results in some cases (more actualised cumulated profit). This kind of result may
arise because with actualisation, strong profit in the starting process are more valorised
than well fitted asymptotic results. For instance, efficient maximum likelihood estima-
tion ensures adequate learning of the true parameters, but requires costly information not
available at the beginning of the market process.

Computational complexity raised by dynamic programming in this case is well known,
even in the case of non sophisticated behaviors. In order to overcome this cognitive and
computational problem [50] introduces a non-parametric discrete approximation technique
called “ beta-logistic” . This approach is based on the following observation: the sequence
of profits that are associated with the various prices offered by the monopolist are Bernoulli
samples. In this context, the unique formulation of the monopolist’s prior beliefs which
permits a joint analysis of his learning process is the family of beta distributions. As a
result, non-parametric estimation of the distribution of reservation prices over the potential
customers may differ significantly from a logistic curve, even in the case where the true
distribution is logistic. That is the case in the simulation under review, where prior beliefs
of the monopolist follow a logistic distribution, which is projected on the beta distribution
family. Although such a method may seem strange in the case where the prior and the
true distributions are the same (except for some unknown parameters), it appears to be
powerful in the maybe more realistic case, where the real distribution is non-parametric
or different from the prior one.

In the simulation in Figure 14, the size of the population is 192 361 agents. The true
logistic distribution, with parameters Ve = 5 and mu = 1, has a cumulative representation
in the south-west quarter. The dispersion parameter, mu, is assumed to be known. Ve = 5
means that 50% of the population of agents buy for p = Ve.10 = 50. The prior and (non
parametric) updated distribution is represented in the south-east quarter. The unknown
parameter is estimated by the way of prior belief as Ve(0) = 6, which means that the
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monopolist is optimistic. That is, he believe that 50% of the population of agents buy for
p = Ve(0)∗10 = 60. At the beginning of the period, an omniscient monopolist, who would
know the true distribution, would charge the optimal price at p = 40, and the related
profit would be 30. These two references are drawn by lines on the north-west quarter.
The uneven curve above the line at p = 40 is the effective trial and error optimistic price.
After roughly 40 iterations, the monopolist finds the “ good” price and maintains this
price over 50 periods (exploitation). A new temporary re-exploration of higher prices
arises. Such exploration can be interpreted in the following way : the monopolist is not
sure about the profitability of these (higher) prices already charged in the past and does
it again. Because these higher prices decrease the cumulated profit, the price returns to
p = 40, for a new transitory period of exploitation etc.

Figure 14: Optimal learning by experimentation

In this model, on the one hand, only the seller has a significant cognitive activity,
and on the other hand, one can explore the effect of communications structures between
agents. Leloup [50, 51, 52] extends this framework to a dynamic pricing model in which
the buying agents are able to communicate their purchase experience to other buying
agents. Agents are assumed to have an ad hoc revision policy for their reservation price
which consists in rejecting all prices that are strictly higher than a price that has been
charged (in the past) by the selling agent to a member of their neighborhood, even if
these prices are lower than or equal to their initial reservation price. In the case of a
Moore neighbourhood, because the diffusion of the information between customers, the
probabilities of purchase associated with high prices rapidly decrease if the monopolist
explores lower prices to inquire about their profitability. Moreover, when the monopolist
has pessimistic prior beliefs, the price dynamics converges towards a price that is often less
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than the initial optimal price. Finally, in this setting, the cumulative distribution function
of willingness to pay is no longer stationary. The resulting complexity of such a problem
renders the analytical study of price dynamics hard to carry out, and ACE allows us to
get insights into the characteristics of such a market.

4.3 Collective learning and complex dynamics in a discrete choice model
with networked externality

Phan, Pajot, Nadal, [74]. explore the effects of the introduction of localised externalities
through interaction structures upon the local and global properties of the simplest market
model: the discrete choice model (Anderson et al., 1992) with a single homogeneous prod-
uct and a single seller (the monopoly case). The general characteristics of this model are
studied by [62] see [73] for a synthesis and relationship with other models of social influ-
ence as well as the statistical mechanism). We focus here on the dynamics of the demand
based upon both individual idiosyncratic preference and networked social influence, with
exogenous prices. The ACE approach allows us to investigate both the price-dependent
equilibrium path and out of equilibrium market dynamics and to underline in what way
the knowledge of the generic properties of complex adaptive system dynamics can enhance
our perception of such market dynamics.

In this model, the agent has to choose between buying (ωi = 1) or not buying (ωi = 0)
one unit of a given goods. Agents are assumed to have a linear willingness to pay, and
maximise a surplus function Vi(ωi) . That is, their individual choice makes Vi(ωi) positive
if the agent buys and null otherwise.

max
ωi∈{0,1}

Vi = max
ωi∈{0,1}

ωi(hi + Jϑ

∑

k∈ϑi

ωk − p) (1)

Specification (1) embodies both a “private” and a “social” component, which corre-
spond to the idiosyncratic and the interactive heterogeneity respectively. The private
component hi is strictly deterministic at the agent level (see [73] for a discussion of this
assumption). To be more significant, let us decompose this first component between a com-
mon sub-component h, and an idiosyncratic sub-component θi, such as : hi = h + θi.
Agents are randomly distributed on the network (fixed random field) according to a para-
metric cumulative distribution F (z) with mean = 0 (more specifically, θi are logistically
distributed with variance σ2 = π2/(3β2)):

lim
N→∞

∑

N

θi = 0 ⇒ lim
N→∞

1
N

∑

N

hi = h (2)

The social (or interactive) component embodies additive effects of the choices of the
others upon the agent’s choice. Specification (1) does not have an unequivocal seman-
tics. That is, numerous cases, including latent sub-models, can lead to such linear social
interdependence. Formally, assuming a regular network and homogeneous interactions in
each neighbourhood, we have symmetric Jik = Jϑ = J/nϑ for all influence parameters,
where nϑ is the number of neighbours around agent i and J a positive parameter. For a
given neighbour k taken in the neighbourhood (k ∈ ϑ), the social influence is Jϑ if the
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neighbour is a customer (k = 1), and zero otherwise. That is, social influence depends on
the proportion of customers in the neighbourhood. For physicists, this model is formally
equivalent to a “Random Field Ising Model” (RFIM - see [73])

In this class of models, the individual threshold of adoption implicitly embodies the
number of people each agent considers sufficient to modify his behaviour, as underlined in
the field of social science by Schelling [79] and Granovetter [34], among others. In this case,
the adoption of a single agent in the population may lead by chain reaction to significant
change in the whole population. Taking an example of an incremental change in price, a
chain reaction may link one or several other “ direct adopters” with “ indirect adopters” .
Adoption by the former is only motivated by a change in the so-called “ external field” :
Hi = hi − p , for a given value of the social influence (the “ local field” ). Formally, those
with surplus function such as: hi + S(p − 1) − p > 0, where S(p − 1) denotes the value
of the local field before change in price. The latter may be motivated by changes both in
the external field and the local field (social influence ). However, any “ indirect adopters”
would change their behaviour without taking into account the social influence effect; that
is, they have : hi + S(p − 1) − p < 0, but chain reaction conduct the local field towards a
value such as the surplus became positive. In the following, the word “ avalanche” refers,
at the global level, to the cumulative effect of such a chain reaction until reach the next
equilibrium.

Table 2: Direct and indirect effect of prices upon individual choices
Direct effect of price Indirect effect of price

(social influence: avalanche)

source : Phan, Pajot, Nadal, [74]

When individual choice depends upon social influence , two kind of dynamics charac-
terise such avalanches. On the one hand, if all agents take into account only the global
mean choice of the others, the situation is formally equivalent to the so-called “ mean field”
approximation of the physicist. That is, for sufficiently large populations, “ global” inter-
action is equivalent in specification (1) to complete interconnection (nϑ = N −1), because
the normalisation assumption Jϑ = J/nϑ leads each individual to be influenced to the
same magnitude by the mean choice of the others (the “ world” neighbour in Moduleco).
In this case, because social influence is “ as if” , the neighbourhood of each agent would be
composed of all the other agents. Both avalanches and aggregate demand are independent
of the topology of the social network. On the other hand, local interdependence gives rise
to localised avalanches on the network, following the structure of the network. Character-
istic related consequences are the emergence of clusters with possible locally frozen zones
[30].

Starting from an initial situation where any agent has adopted the product (ωi = 0 for
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all i), if the idiosyncratic component of willingness to pay were uniform, (hi = h, for all
i), each agent’ choice depends on the sign of the external field: H = h− p. In such a case,
one could have a so called “first order transition” , if all the population abruptly adopted
it, when p decreases below h. Let ph = h denote this take-in threshold. It is significant
to observe than the inverse phenomenon do not have the same threshold, because when
all agents are previously adopters, the surplus function depends both on the external field
and on the local field. The latter is equal to J , because all agents are adopters. As a
consequence, the take-off threshold will be pj = h + J : if the price decrease under pj ,
all the agents are no longer customers for this good, and the whole population abruptly
leaves the market. As a consequence, in such an extreme case, after adoption, there exists
a price interval [ph, pj [ within no change occurs in the market demand.

In the presence of quenched disorder (non uniform hi), hysteresis loops may occur. The
number of customers evolves by a series of cluster flips, or avalanches. If the disorder is
strong enough (the variance σ2 of hi is large compared to the strength of the coupling J),
there will be only small avalanches (each agent following his own hi). If σ2 is very small,
then there is a unique “infinite” avalanche, as in the uniform case previously described.
There is an intermediate regime where a distribution of avalanches of all sizes can be
observed.

From the theoretical point of view, it is possible to identify, a special price value pn,
which corresponds to the unbiased situation. In this case, on average, the willingness
to pay is neutral: there are as many agents likely to buy than not to buy. Formally,
if only 50% of the agents are customers, the average willingness to pay is h + J/2, and
pn = h + J/2. Let us remark than pn is exactly the middle of the price interval [ph, pj[.
Starting from this unbiased situation, where p = pn For p < pn, there is a net bias in
favour of “ buy” decisions (h + J/2− p > 0), whereas for p ≥ pn there is a net bias not in
favour of “ buy” decisions. A spontaneous symmetry breaking occurs when an avalanche
leads from a situation where p < pn with less than 50% of customers towards a situation
whith more than 50% of customers, even with this lower price.

To experiment such a phenomenon, it is useful to take a simple example from a sim-
ulation. Let us take a logistic distribution with mean=0 for the cumulative distribution
F (z) (see [73] for a discussion). For a given variation in price, it is possible to observe
the resulting variation in demand. The most spectacular result is when nearly all agents
update their choices simultaneously (“world” - synchronous - activation regime) , in the
case of global interactions (complete connectivity). in Figure 15a, curves plot each step
in the simulation for the whole demand system, including the set of equilibrium positions
for a given price. The black (grey) curve plots the “ upstream” (downstream) trajectory,
when prices decrease (increase) incremented in steps of 104, within the interval [0.9, 1.6].
We observe a hysteresis phenomenon with phase transitions around the theoretical point
of symmetry, pn = 1, 25. In both cases, strong avalanches occur in a so-called “ first order
phase transition”.

Along the upstream trajectory (with decreasing prices – black curve), a succession of
growing induced adoption arises for p = 1.2408 < pn, driving the system from an adoption
rate of 30% towards an adoption rate of roughly 87%. Figure 15b shows the chronology
and sizes of induced effects in this dramatic avalanche.

Along the downstream trajectory (with increasing prices –grey curve) the externality
effect induces a strong resistance of the demand system against a decrease in the number
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Figure 15: Straight phase transition under “world” (synchronous) activation regime

a - Hysteresis in the trade-off between prices b - Chronology and sizes of induced effects

and customers upstream (black) in an avalanche at the phase

and downstream (grey) trajectory transition for p = 1.2408 - pn = 1.25)

Source : Phan, Pajot, Nadal [74]; Parameters : Logistic with = 20 ; seed = 190

of customers. The phase transition thresholdis here around p = 1.2744 > pn. At this
threshold, the equilibrium adoption rate decreases dramatically from 73% to 12,7%.

The scope of avalanches within the hysteresis loop increases with connectivity. Figure
16a exhibits a soft hysteresis loop (called second order phase transition) with the same pa-
rameters, but within a regular (periodic) network in dimension one, for two neighbours. As
suggested by the previous example of no idiosyncratic willingness to pay (hi = h for all i),
the steepness of the phase transition increases when the variance of the logistic distribu-
tion σ2 = π2/(3.β2) of the i decreases (when increases). The closer the preferences of the
agents, the greater is the size of avalanches at the phase transition. Figure 16b shows a
set of upstream trajectories for different values of β taken between 20 and 5. For β < 5
here is no longer any hysteresis at all. Figure 16c shows a narrow hysteresis for a regular
(periodic) network in dimension one, with eight neighbours, while Figure 16d exhibits a
larger one. Finally, following results by Sethna [81], inner sub-trajectory hysteresis can be
observed in the case of this Random Field Ising Model (Figure 16d). Here, starting from
a point on the upstream trajectory, an increase in price induces a less than proportional
decrease in number of customers (grey plot). The return to the exact point of departure in
the case of decreasing prices again (black curve) is an interesting property of the Sethna’s
inner hysteresis . From the economists’ point of view, such a property may be used by the
seller in an exploration-exploitation process of learning around a given trajectory.

To conclude, in the case of regular networks, a discrete choice market with external-
ity provides, numerous complex dynamics on the demand side. As a result, the seller’s
problem is generally non trivial, even in the case of risk, where the seller knows all the
parameters of the program (1) and the initial distribution of the idiosyncratic parameters
[?]. In particular, an interesting challenge for cognitive economics is to try to merge the
exploration-exploitation bayesian revision process in a sequential discrete choice model
without externality , reviewed in (31) and the externality case (32), which raises the ques-
tion of the non-stationary environment of both the upstream and downstream trajectory.

5 Conclusion

This chapter is an attempt to provide an introduction and easy understanding of typical
complex phenomena that may arise in interactive context modelling by way of ACE. More-
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Figure 16: The trade-off between prices and customers (synchronous activation regime)
a - Prices-customers hysteresis, neighbours=2 b - total connectivity (world) 20 ≥ β ≥ 5

c- Weak hysteresis d - Hysteresis sub-trajectory: [1, 18 − 1, 29]

(neighbourhood = 8 seed 190 b = 5) (neighbourhood = 8; seed: 190; β = 10)

Source : Phan, Pajot, Nadal [74]

over, Computational Laboratories (CL) provides a useful framework to friendly model,
understand and investigate the dynamics of complex adaptive systems. Both ACE and
CL are therefore, very useful for modelling markets viewed as cognitive and complex social
interactive systems, in the way of cognitive economics.

The last section presents two models in the simplest monopoly market case: discrete
choice with a homogeneous product. The former focuses upon individual learning at
the monopolist level, in an interactive decision theoretical approach. The latter focuses
upon collective learning at the market level, where individual demand are related though
social influence within a communication network. In both cases, addressing separately one
dimension of cognitive economics, the resulting dynamics are far from being trivial, and
CL appears to be a useful tool for investigating such problem by simulations , where an
exact solution may exist only in the simplest case.

The integration of both the collective and individual dimension in the same framework
is a real challenge for cognitive economics. Actually, even if it is easy to model population
dynamics with adaptive agents in an ACE framework, the conceptual and formal integra-
tion of the two dimensions within a significant and coherent analytical framework need
more development. If we want to keep a link between analytical and ACE modelling, the
connection between the two dimensions need such integration in simple cases, such as the
reference and departure points. Without such a reference, ACE will be widely disconnected
from a more standard approach. Such a disconnection is a possible issue for modelling eco-
nomic problems, where ACE would be a complete substitute for an analytical approach.
The strategy suggested here is to keep the connection between these two approach and to
use ACE as a complement of the analytical one, in particular to investigate complex dy-
namics linked with both social interactions and belief revisions. Unfortunately, cognitive
economy, which provides powerful models separately in an epistemic and an evolutionary
perspective, fail at this time to provide an integrated analytic framework of reference.
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Let us note the advances by Orléan [68], in taking into account the collective dimension
of belief, through his discussion on the nature of social representations. However, the
integration of the two dimensions seems to be the major challenge for the coming years.

Finally, numerous interesting cognitive economics questions to model by means of
the ACE framework are not reviewed here. We can cite among others, the emergence and
dynamics of networks ([27, 13, 96]. . .), viability and control [8], evolutionary games models
([76, 11]. . .). In the issues not addressed here, co-evolutionary dynamics for populations of
agents heterogeneous with respect to their cognitive capacities [16] will also be stimulating
challenge for both ACE and cognitive economics in the years to comes.
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Vallée for valuable discussions and intellectual support; the participants of the cognitive economics seminar, specially
Richard Baron, Alan Kirman, Bernard Ruffieux, Gérard Weisbuch for their comments on a preliminary version of
this Chapter; and finally all the programming contributors of Moduleco for their help.

31


